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Université Libre de Bruxelles, B-1050, Bruxelles, Belgium

E-mail: Chethan.Krishnan@ulb.ac.be

Abstract: Using the dual string theory, we study a circular baryonic configuration in a

wind of strongly coupled N = 4 Yang-Mills plasma blowing in the plane of the baryon,

before and after a quark has dissociated from it. A simple enough model that captures
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other color singlet configurations, is robust for circular baryons as well.
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1. Introduction and conclusion

There is a possibility that screening of heavy quark baryons in a wind of strongly cou-

pled plasma might be experimentally accessible at RHIC or LHC.1 Unfortunately, this is

a deeply non-perturbative scenario in standard QCD, and therefore essentially out of the-

oretical control. Interestingly enough, semi-quantitative features of baryon screening can

be computed using a dual string theory through the AdS/CFT correspondence [1]. This

has resulted in some non-trivial progress in the understanding of screening phenomena in

strongly coupled plasmas [2 – 5].

In a wind of plasma, the screening is direction-dependent, and it stands to reason that

when the baryon dissociates, there will be preferred directions in which this can happen

first. The purpose of this paper is to explore this possibility by computing some basic

energetics. This should be taken as a small step towards phenomenology.

As a warmup, we first compute the (regulated) energy of a circular baryonic configura-

tion with Nc = 4 quarks2 (attached in the bulk to a D5-brane baryon vertex wrapping the

S5), moving in a hot, strongly coupled, N = 4 plasma. For a generic baryon configuration,

1We emphasize that so far heavy quark baryons have not been observed either in elementary collisions

or heavy ion collisions.
2The choice 4 is obtained by optimizing between non-triviality and simplicity.
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this can be done using worldsheet string theory in AdS5×S5, with a black hole in the inte-

rior. Our results about these baryons also serve as a test of robustness of the known results

in the literature. After this, we calculate the energy of the configuration after one of the

quarks has dissociated from the baryon and is well-separated. Both the quark, and what

remains of the baryon, will have trailing strings reaching down to the black hole horizon.

There are many such dissociated configurations, and we will try to get some intuition for

them by considering some special cases. Among these will be two extreme scenarios: one

when the remaining three quarks are spaced equidistantly in a line along the wind (case

I), and the other when the quarks (again spaced equidistantly along a line) are perpendic-

ular to the wind (case II). The “dynamics” of the system is sufficiently stringent that for

the configurations we consider, we will be able to explicitly do the computations without

getting tangled up in too many details.

We stress that our aim is not to identify preferred dissociation channels and do any

detailed phenomenology. This would be a tall order. Our aim is merely to see whether

something can be said about energetics of transverse configurations vs. longitudinal ones.

The two specific cases we consider are chosen with this specific purpose in mind, and they

are not supposed to necessarily be the preferred dissociation products. In fact, one might

think that the “natural” dissociated configurations are instead the ones we consider in

appendix C. But this is so only if one assumes that the remaining quarks stay on the circle.

The problem here is that “natural” is not very well-defined, because the dynamics is not

under control and all we are dealing with are static configurations.

In any event, we find that the energy of the configuration with quarks parallel to the

wind (case I) is at a higher energy than case II, and therefore it is tempting to speculate

that for baryons in a wind of plasma, the quarks along the wind will dissociate first. We

emphasize that the computations we do should not be taken as a proof of this claim, even

though we believe they are suggestive. In particular, it is not clear what configurations

constitute extreme cases. It is a complicated dynamical question whether a configuration

would prefer to change the dimension (i.e., change the length L) and/or change the ori-

entation in order to lower its energy. But it can still be instructive to have a comparison

of identical configurations with different orientations: naively, one might think that for a

given dimension, a transverse configuration is at a higher energy because it has more cross-

section to the wind. Our results show that this is not the case. Also, there are speculations

and comments in the literature about the relative energetics of transverse-vs.-longitudinal

cases. Such statements make most sense only if one assumes that we are comparing two

configurations of identical dimensions, and this is what we do.

In general, the features of a dissociated baryon are likely to depend strongly on the

specific configurations under consideration, and making generic claims is difficult. To

emphasize this, we compute the energetics of some other dissociated configurations in

an appendix.

A more detailed computation where the number of quarks and the possible dissociation

channels are increased will certainly be useful in shedding more light on similar questions.

It would be interesting to do a full scan in the the space of allowed dissociated configura-

tions, but this is numerically a more demanding problem than what we have undertaken
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in this paper. It should also be pointed out that conclusive evidence might require an un-

derstanding of the dynamics of dissociation patterns which our static calculation is blind

to: in principle, it is always possible for instance that the configuration can rotate or dilate

during or after a dissociation process.

In the course of the computations in this paper we learn a few things about dragging

and non-dragging objects and these will be elaborated upon as and when they arise. Among

these is the observation that the screening length formula found previously in the literature

for other color singlet configurations, LsT ∼ (1 − v2)1/4, is valid for circular baryons as

well. This is interesting because the details of the configurations and the computations

are quite different in our case. Another thing we find is that the plots of E vs. L for

non-dragging objects exhibit a cusp while those of dragging configurations exhibit a loop,

and we speculate that the area of the loop is a measure of the drag of the configuration.

This could potentially be a measure of the energy loss.

In this paper, we only consider the simplest possible scenario: a baryon that is sim-

ulated by a circular configuration of four (external) quarks in the maximally symmetric

gauge theory, with the added simplification that the plasma is flowing in the plane of the

baryon. But it is possible to consider generalizations of the results here to more generic

baryon configurations, less special gauge theories and perhaps more generic wind direc-

tions. It would be interesting to see how generic the results are. Some papers that are

relevant (from various angles) to hot strongly coupled QCD are [11 – 23].

2. Baryon screening and the AdS black hole

Baryons are made out of fundamental quarks in QCD, but the field content of the N = 4

supersymmetric Yang-Mills theory consists of gluons, gluinos and scalars (all in the adjoint);

but not quarks. So in order to model QCD phenomena, we introduce baryons that are

constructed out of external quarks. If the N = 4 SYM theory has Nc colors, the baryons

will be constructed from Nc such external quarks.

The dynamics of baryons in the gauge theory is captured in the dual AdS5 ×S5 string

theory through the introduction of the so-called baryon vertex [6]. The claim is that

baryons in the gauge theory are dual to configurations that involve a D5-brane wrapping

an S5 in the bulk, with all the heavy external quarks in the boundary baryon being linked

to it through fundamental strings (all of which are of the same orientation).

The way in which we make predictions for a baryon moving in the plasma is by boosting

to the rest frame of the baryon and letting the plasma move instead. In the dual picture,

we look for static baryon configurations in the boosted bulk metric. In the course of this

paper, we will be exclusively working with the case of N = 4 SYM, with the plasma

at a temperature T . Finite temperature implies that the asymptotics of the bulk is still

AdS5 × S5 but in the interior we have to change the metric to include a black hole whose

Hawking temperature is T [7]. Before the boost, this bulk AdS black hole metric takes

the form

ds2 = −f(r)dt2 +
r2

R2
d~x2 +

dr2

f(r)
+ R2dΩ2

5, (2.1)
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with

f(r) =
r2

R2

(

1 − r4
0

r4

)

. (2.2)

The asymptotic boundary where the field theory lives is supposed to be at r → ∞, and is

spanned by ~x = {x1, x2, x3} and the bulk-time t. In the above, r0 is the black hole horizon

and the temperature T is fixed by the Hawking relation T = r0

πR2 . The standard CFT to

AdS correspondence is usually expressed by taking the defining parameters of the gauge

theory to be λ (≡ g2
YMNc) and Nc. Then, the bulk data is related to the boundary data

through Maldacena’s famous relations

λ

Nc
= 4πgs,

√
λ =

R2

α′ , (2.3)

with gs the string coupling and 1
2πα′ the worldsheet tension. The Maldacena conjecture

can be taken as the claim that string propagation with these parameters in the AdS back-

ground (with a background five-form flux controlled by R) is just another description of

the gauge theory.

We will take the plasma wind to be in the x3-direction after the boost, and the velocity

and rapidity are related by v = − tanh η. The boosted metric takes the form

ds2 = −Adt2 + 2B dt dx3 + C dx2
3 +

r2

R2

(

dx2
1 + dx2

2

)

+
1

f(r)
dr2 + R2dΩ2

5 . (2.4)

The various quantities are fixed by,

A =
r2

R2

(

1 − r4
1

r4

)

, B =
r2
1r

2
2

r2R2
, C =

r2

R2

(

1 +
r4
2

r4

)

, (2.5)

and

r4
1 = r4

0 cosh2 η, and r4
2 = r4

0 sinh2 η. (2.6)

Our description of the baryon-like configurations will involve the baryon vertex (the D5-

brane), and various strings emanating from the baryon vertex and ending on the asymptotic

boundary or the black hole horizon. The actions of the string worldsheets and the D5-brane

can be used to determine static solutions to the equations of motion. We will work below

in the restricted context of the AdS black hole described above, a more general formulation

can be found in [5].

In this section, we will illustrate the method by explicitly working out the relevant

physics of an Nc = 4 baryon moving in the plasma. This example is also our prime

workhorse. The conflict between setting Nc = 4 and the desire to have a large Nc planar

approximation where finite string coupling effects are suppressed does not seem to be too

much, because as we will see, the various results that were found in [5] can be reproduced

in our case as well. In particular, in [5], large Nc squashed baryons were considered, and

the curves that we find later in this section are in excellent agreement with their work.3

3The details of the configurations we consider here are different from those considered in [5], so this

result also serves as a check of robustness for the screening-length formula.
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x3
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L

r = re

Boundary

Horizon

Figure 1: The Nc = 4 baryon configuration in the AdS black hole background. The baryon vertex

is at r = re.

So we believe that we are not throwing the baby out with the bath water by studying

this simple system. Adding more quarks is in principle straightforward, except that the

computational effort is, of course, more.

The configuration we wish to study is shown in figure 1. The circular configuration of

quarks lies in the x1-x3 plane and the plasma wind is in the x3 direction. In the figure we

have suppressed all coordinates except r, x1 and x3. The action for the system is given by

S = S1 + S2 + S3 + S4 + SD5, (2.7)

where subscripts denote the various strings and the D5-brane. The actions for the various

strings are computed à la Nambu-Goto in the black hole background:

SNG =
1

2πα′

∫

dσdτ
√

−gαβ, with gαβ = Gµν∂αxµ∂βxν , (2.8)

where G is the black hole metric and g is the induced worldsheet metric. If we assume

that the configuration experiences no drag,4 we can look for axially symmetric circular

4This assumption is supported by the computations involving meson configurations [2, 4, 8, 9, 11, 12]

as well as previously considered baryon configurations [5, 10]. Our aim in this section is to set up the

formalism and check whether we can connect with the results obtained in the literature, so we will not try

to derive it ab-initio. We will assume no-drag for the baryon, and be content that the results work out

precisely as expected. Of course, when we consider the dissociated configurations, we will not make the

no-drag assumption.
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configurations like the one shown in figure 1. For the two strings in the x1 direction, then,

we can take the embedding to be

τ = t, σ = r, x
(a)
1 = x

(a)
1 (σ) (2.9)

where a is either 2 or 4 and denotes the appropriate string (see figure 1). No τ dependence

arises because we are interested in static configurations. The action for the strings takes

the form

Sa =
T

2πα′

∫ ∞

re

dr

√

A

(

1

f
+

r2

R2

(

x
(a)
1

′)2
)

, a = 2, 4, (2.10)

where T can be thought of as the total time which gets divided out in any relevant quantity.

Primes denote derivatives with r. In the above expression, re is the position of the baryon

vertex and it can lie anywhere between r = r0 and r = ∞, i.e., between the boundary and

the horizon. The boundary conditions for the string coordinates are fixed by the condition

that the baryon vertex has coordinates (r = re, x1 = 0, x3 = 0). At the boundary, from a

glance at the figure, we see that x
(2)
1 (∞) = −L and x

(4)
1 (∞) = L, where L is the radius of

the circle. For the strings in the x3-directions, similarly, we get

Sb =
T

2πα′

∫ ∞

re

dr

√

(

A

f
+

r2

R2
f
(

x
(b)
3

′)2
)

, b = 1, 3. (2.11)

The boundary conditions at infinity are given by x
(1)
3 (∞) = L, x

(3)
3 (∞) = −L. The action

for the D5-brane vertex can be taken as [5]

SD5 =
NcRT
8πα′

√

A(re). (2.12)

2.1 Energetics and screening lengths

The equations of motion for the configuration are obtained by varying the total action with

respect to the x(r)’s and also with respect to the location of the D5-brane. The details

have been worked out in [5] and the result adapted to our case takes the following form (we

suppress the string number superscripts a(= 2, 4), b(= 1, 3) in some of the equations below).

Strings 1, 3:
(

x′
3

)2
=

R4

f2r2

K2
3A

(

r2f − R2K2
3

) , x′
1 = 0. (2.13)

The K3 are integration constants. The K3 have to satisfy the condition,

K
(1)
3 + K

(3)
3 = 0, (2.14)

as a force balance condition on the D5-brane. So we effectively need to solve only for one

of the strings.

Strings 2, 4:
(

x′
1

)2
=

R4

r2

K2
1

f
(

r2A − R2K2
1

) , x′
3 = 0. (2.15)

Again there is the relation

K
(2)
1 + K

(4)
1 = 0 (2.16)

that has to be satisfied.

– 6 –
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D5-brane:

2R
√

A
√

f (R2 + fr2(x′
1)

2)

∣

∣

∣

∣

r=re

+
2RA

√

f (AR2 + f2r2(x′
3)

2)

∣

∣

∣

∣

r=re

=
r4
e + r4

1

r2
e

√

r4
e − r4

1

(2.17)

It should be noted that this equation is evaluated at r = re. Since the string equations

written down above depend only on the square of the K’s, and these squares are identical

for both strings in each pair, we don’t specify the superscript in the x′
1 and the x′

3 in the

D5-brane equation.

By introducing new variables, we can write these in the equivalent form

L =
ρ β

πT

∫ ∞

1
dy

1

(y4 − ρ4)

√

y4 − ρ4 cosh2 η

y4 − ρ4 − β2
, (2.18)

L =
ρ α

πT

∫ ∞

1

dy
√

(y4 − ρ4)(y4 − ρ4 cosh2 η − α2)
, (2.19)

√

1 − ρ4 cosh2 η
√

1 − ρ4 − β2

(1 − ρ4)
+

√

1 − α2 − ρ4 cosh2 η
√

1 − ρ4
=

1 + ρ4 cosh2 η

2
√

1 − ρ4 cosh2 η
. (2.20)

We have integrated the string equations of motion while imposing the boundary condition

that the radius of the circle is L at the asymptotic boundary. In the process we have also

introduced the notation

α2 =
K2

1R4

r4
e

, β2 =
K2

3R4

r4
e

, y =
r

re
, ρ =

r0

re
. (2.21)

To extract information about the baryon we need to solve these three equations simul-

taneously. This can be done numerically.

• Pick a value for η first.

• Now, for each ρ (it is easy to see that ρ must lie in the range (0, 1) from the geometry)

we can solve for β in terms of α as we vary α (which again has to be between 0 and

1.).

• The correct value of α for each ρ, is the one where the α-integral matches the β-

integral.

• The value of the integral(s) at which this match happens is the value of L.

• Repeat the above procedure for another value of η.

Plot of L as a function of ρ are presented here, for a few values of η. The plot for L

has a peak, and this is what one identifies as the screening length, Ls. The results here

match perfectly with those in [5].

The dependence of Ls on the rapidity η can also been plotted, and the result again

agrees with expectations from other baryonic and mesonic configurations considered pre-

viously in the literature. In particular, it is evident from this plot that LsT ∼ (1 − v2)1/4

for large boosts, and this is a check of the robustness of this result.

– 7 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
9

0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

Figure 2: LT vs. ρ for η = 0 (top curve), 2, 4 (bottom curve). The maximum is associated to the

screening length Ls at the corresponding η.

1 2 3 4

0.088

0.090

0.092

0.094

Figure 3: LsT
√

cosh η vs. η.

In the bulk of this paper, however, energetics are more interesting to us than screening

lengths, so we turn to the computation of energy. The total energy is the sum of the various

pieces, with the caveat that the energy of each string in the baryon needs to be regulated

by subtracting the energy of a free string stretching all the way from the boundary to the

horizon. Before the regularization, the total energy is given by the (formal) expression

E =
1

πα′

∫ ∞

re

dr

√

A

f
+

r2f

R2
(x3

′)2 +
1

πα′

∫ ∞

re

dr

√

A

f
+

r2A

R2
(x1

′)2 +
R

2πα′
√

A(re)
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Figure 4: E

T
√

λ
vs. L, for η = 0 (top curve), 2, 4 (bottom curve).

Factors of two have been put in to take account of the two strings in each pair. The last

piece is the energy of the D5-brane. The energy of the regulator quark has been calculated

in the literature, we will use the expression (A.10) from [4]. The idea is to cut off the

energy integral written above at Λ instead of ∞, subtract the quark energy integrated

from the horizon to the cutoff, and then take the limit Λ to infinity after the subtraction.

The result is,

E = T
√

λ

[

1

ρ

∫ ∞

1
dy

(

√

y4 − ρ4 cosh2 η

y4 − ρ4 − β2
− 1

)

+ 1 − 1

ρ
+ (2.22)

+
1

ρ

∫ ∞

1
dy

(

y4 − ρ4 cosh2 η
√

(y4−ρ4)(y4−ρ4 cosh2 η−α2)
−1

)

+1− 1

ρ
+

√

1 − ρ4 cosh2 η

2ρ

]

.

where we have used the variables 2.21 as well as Maldacena’s relations and the geometrical

definition of the Hawking temperature.

With the values of L, α, β that we computed earlier, it is possible to make a numerical

plot between L and E for various values of η and we present the results in the figure. This

ties in as it should, with the similar plot in [5].

The computations of this section serve two purposes. Firstly and primarily for us, they

give a context for the rest of the work on this paper. But in the process, they also provide a

confirmation of the robustness of previous results on baryons. In [5], qualitatively identical

results were observed, where instead of keeping the baryons on a circle, the angle at which

the strings hit the D5-brane was fixed. This amounts to considering quark configurations

that are squashed in the plasma wind. This makes the computations technically different,

but still we see from a glance at the plots that the essential features are identical and

therefore that the results are indeed very robust. In particular, the screening length formula

LsT
√

cosh η ∼ const. holds in our case as well for large η, even though the value of the

constant seems slightly different.5

5The slight variation in the constant is not bad - its value is known to depend on the details of the

configuration, see e.g. figure 7, in [5].
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3. Dissociated baryons

Clearly there are many possible ways in which the baryon presented in the previous section

can dissociate. One possibility is to look at configurations where one quark has dissociated,

while keeping as many of the remaining quarks as possible still on the circle. After the

force balance conditions are imposed on the D5-brane, there are only a few interesting

configurations which one can consider in this manner (we will look at them in appendix

C). But since the process of ripping a quark is fundamentally dynamical, it is not clear

to us that such configurations where the quarks are forced to be in a circle are the only

ones preferred. Since it is difficult to come up with an unambiguous definition of what is

“closest” and what is “farthest” to the original baryonic configuration,6 we will attempt

something more modest here. We will instead consider two baryonic configurations with

identical linear dimensions but different orientations. We hope to make some comments

about their relative energetics from this, but notice that we are steering clear of the question

of what are the preferred dissociation products.

The two configurations we consider are as follows. One is when the undissociated

quarks are in a rigid identically spaced line parallel to the wind (i.e., along x3) (case I),

and the other is when they are in the direction perpendicular to the wind (i,e., along

x1) (case II). We will also have a dissociated string in each case, which we will take to

be well-separated from the rest of the baryon. Our aim is to look at two configurations

that are identical, except for their orientation in the wind. Even though we will need to

work much harder to get a fuller understanding of phenomenology, to get a hint about the

orientation-dependence of the energy, this computation should be enough.

We address both the cases separately. But before doing so, we notice a useful fact: the

dissociated string that trails all the way to the horizon from the D5-brane is forced to lie

along x3. This is demonstrated in appendix B.

3.1 Case I: longitudinal quarks

We first consider the case where the undissociated quarks are along the direction of the

wind. After the dissociation, the string corresponding to the dissociated quark is trailing,

with one of its endpoints at the D5-brane vertex and the other at the horizon. The

configuration we are considering is demonstrated in figure 5, and consists of three quarks

in a straight-line. In case II, we will consider three quarks, again in a straight line, but

perpendicular to the wind. The hope is that these two complimentary configurations will

give us some idea about the energetics. Notice that because of the constraints arising

from force balance at the D5-brane and because the trailing string is forced to lie along

x3, many of the configurations are ruled out. An advantage of comparing the two cases

we consider here is that they give a natural way to contrast between the cases: we can

compare quark configurations of equal linear dimensions on either side. This is useful

in getting some insight about how the energy of a given configuration (with fixed linear

dimensions) changes with the orientation.

6Also, it is not clear how general our understanding would be even if we were to come up with such a

notion for the four-quark baryon.

– 10 –
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1
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4

Figure 5: Case I: Remnant with quarks along the plasma wind.

We can compute the energy of this configuration using methods similar to those of last

section. In what follows, βi, αi are defined as in the last section (the indices in the present

case denote the respective quark). In case I, the αi are identically zero. The origin of the

coordinate system is taken to be at the D5 brane (x1(D5) = x3(D5) = 0). The numbering

of the quarks are indicated in the figure. The trailing string solution forces the relation

β4 = ρ2 sinh η. (3.1)

Using the results of appendix A, we can write down the vertical force balance condition at

the D5-brane as

√

1 − ρ4 cosh2 η

1 − ρ4

(

3
∑

i=1

√

1 − ρ4 − β2
i −

√

1 − ρ4 − β2
4

)

=
1 + ρ4 cosh2 η
√

1 − ρ4 cosh2 η
, (3.2)

and the horizontal balance as,

β1 + β2 + β3 = β4(= ρ2 sinh η). (3.3)

In case I, we will look at configurations with the three undissociated quarks placed equidis-

tantly on a line, along the wind. Thus we have the two equations below for the distance

between quarks.

L12 ≡ L =
ρ

πT

∫ ∞

1
dy

√

y4 − ρ4 cosh2 η

(y4 − ρ4)

(

β2
√

y4 − ρ4 − β2
2

− β1
√

y4 − ρ4 − β2
1

)

,

L23 ≡ L =
ρ

πT

∫ ∞

1
dy

√

y4 − ρ4 cosh2 η

(y4 − ρ4)

(

β3
√

y4 − ρ4 − β2
3

− β2
√

y4 − ρ4 − β2
2

)

.
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These equations follow directly when integrating the equations of motion presented in

appendix B, for the specific case under consideration here.

An algorithm for solving the system is as follows. For each value of η we do

the following:

• Pick a value of ρ.

• For each value of ρ, scan β1 between -1 and 1.

• For each value of β1, solve (3.2) and (3.3) simultaneously to obtain β2, β3, paying

attention to the signs using the geometry of the configuration.

• Now we can compute L12 and L23 for each value of β1. The value of β1 at which the

two coincide is the correct value of β1, and the corresponding L can be plotted as a

function of ρ (for each given η). Once we have fixed β1, it is straightforward to fix

β2, β3 using (3.2) and (3.3).

This can be repeated for each value of η. Once we have L and βi as functions of ρ, we can

compute the energy of the configuration, which is what we are really after. To compare

the energies of cases I and II, we will not need to worry about the far-separated quark, so

the regulated energy of the configuration shown in the figure takes the form:

E = T
√

λ

[

1

2ρ

∫ ∞

1
dy

3
∑

i=1

(

√

y4 − ρ4 cosh2 η

y4 − ρ4 − β2
i

− 1

)

+ 1 − 1

ρ
+

√

1 − ρ4 cosh2 η

2ρ

]

. (3.4)

Here and in the next subsection, we have subtracted the energy of three regulator strings

as opposed to four in the case of the undissociated baryon. We will present plot of L vs. ρ

and E vs. L for both cases I and II together at the end of the next subsection.

3.2 Case II: transverse quarks

Case II corresponds to (undissociated) quarks aligned perpendicular to the wind as in

figure 6. The Nambu-Goto Lagrangian for the string i that is stretched both in the x3 and

x1 directions is given by

Si =
T

2πα′

∫ ∞

re

dr

√

A

(

1

f
+

r2
(

x
(i)
1

)′2

R2

)

+
r2f(r)

(

x
(i)
3

)′2

R2
. (3.5)

The energies, equations of motions etc. for quarks 1 and 3 in figure 6 are computed with

this expression.

Again, from the generic equations of motion written down in appendix A, we find that

the horizontal force balance conditions at the D5-brane enforces

|α3| = |α1| ≡ α, β3 = β1 ≡ β, (3.6)

β2 + 2β = β4(= ρ2 sinh η). (3.7)
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v
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r = ∞

r = r0

2
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3
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1

D5

D5

L

L

L

L

Figure 6: Case II: Remnant with transverse quarks (Box shows top view).

The vertical balance condition can be written as

(1 − ρ4 cosh2 η)

(1 − ρ4)
+

1 + ρ4 cosh2 η
√

1 − ρ4 cosh2 η
= (3.8)

=
2
√

(1 − ρ4 cosh2 η)(1 − ρ4 − β2) − (1 − ρ4)α2

(1 − ρ4)
+

√

(1 − ρ4 cosh2 η)(1 − ρ4 − β2
2)

(1 − ρ4)

The quarks 1, 2 and 3 all have the same x3 coordinate because of the configuration we

have chosen. This means that

ρ β2

πT

∫ ∞

1
dy

1

(y4 − ρ4)

√

y4 − ρ4 cosh2 η

y4 − ρ4 − β2
2

= (3.9)

=
ρβ

πT

∫ ∞

1
dy

(y4−ρ4 cosh2 η)

(y4−ρ4)
√

(y4−ρ4)(y4−ρ4 cosh2 η)−β2(y4−ρ4 cosh2 η)−α2(y4−ρ4)
.

The spacing between the undissociated quarks (fixed to be L) is given by their x1 coordi-

nate, which can be obtained by integrating the equation of motion:

L =
ρα

πT

∫ ∞

1
dy

1
√

(y4 − ρ4)(y4 − ρ4 cosh2 η) − β2(y4 − ρ4 cosh2 η) − α2(y4 − ρ4)
. (3.10)

These equations can again be solved numerically for any value of η:

• Pick a value of ρ.

• For each value of ρ, scan β2 between 0 and 1.

• For each value of β2, solve (3.7) and (3.8) simultaneously to obtain α, β.

– 13 –



J
H
E
P
1
2
(
2
0
0
8
)
0
1
9

0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065
0.0

0.1

0.2

0.3

0.4

0.5

Figure 7: The E

T
√

λ
vs. L plots of the transverse and longitudinal configurations at η = 0. Even

though the numerics that gives rise to the curves is different, the two are exactly on top of each

other.

• Now we can evaluate the r.h.s. and l.h.s. of (3.9) for each value of β2. The value of

β2 at which the two coincide is the correct value of β2. Once we have fixed β2, it is

straightforward to fix α, β using (3.7) and (3.8). The corresponding L can be plotted

as a function of ρ (for each given η) using (3.10).

The regulated energy of the dissociated case II configuration can be calculated similar

to the previous cases (here again, we subtract three quarks as in case I) and the result is

E = T
√

λ

[

1

ρ

∫ ∞

1
dy

(

(y4 − ρ4 cosh2 η)
√

(y4 − ρ4 cosh2 η)(y4 − ρ4 − β2) − α2(y4 − ρ4)
− 1

)

+ (3.11)

+
1

2ρ

∫ ∞

1
dy

(

√

y4 − ρ4 cosh2 η

y4 − ρ4 − β2
2

− 1

)

+ 1 − 1

ρ
+

√

1 − ρ4 cosh2 η

2ρ

]

.

3.3 Plots

Using the expressions from the previous subsections and the numerical simulations resulting

from them, we can make comparisons between the energies of the two dissociated configu-

rations. The curves are similar in both cases, except that the longitudinal quarks are at a

higher energy when the windspeed is non-zero. The energy plots should be identical when

the windspeed goes to zero since case I and II are identical in this case, so this can be

used as a consistency check of our numerics. This is indeed what we find as clear from the

η = 0 plot. We show the plots of E vs. L for two representative cases (η = 0 and η = 6),

in their interesting regimes of parameters. The fact that longitudinal configurations are at

a higher energy than transverse ones has previously been observed in the case of mesonic

configurations in [4] (see right panel of figure 6 in [4]).
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Figure 8: The E

T
√

λ
vs. L plots for the two cases at η = 6. The longitudinal curve is the one at

higher energy. The qualitative features are identical at other values of η 6= 0.

0.00 0.02 0.04 0.06 0.08
0.000

0.001

0.002

0.003

0.004

0.005

Figure 9: LT vs. ρ for η = 6 for the two cases. The transverse case (II) is marginally lower, as

expected from the intuition of figure 4 in [5].

Another observation one can make from the plots is that the energies of the dissociated

configurations are always above those of the corresponding undissociated configurations for

sufficiently large values of η, and this is shown in figure 10b. This result is reasonable. The

zero of the energy at each η is set by the (colored) trailing string at that η. We also know

from a previous section (see also [5]) that baryons have negative energy with respect to this

datum, for sufficiently large windspeeds. So the configurations we are investigating here,

which are morally between baryons and free strings, should naturally have intermediate

energies. For small enough windspeed, there is some changes in these comparative plots,
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(a) η=0 (b) η = 6

Figure 10: Plots of E

T
√

λ
vs. LT for baryons (lower curves) and dissociated configurations (upper

curves). For less clutter we only show the transverse case.
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0.003

0.004

Figure 11: Typical shapes of E and L vs. ρ for any η and for any configuration. The axes

have been re-scaled to fit the curves on the same plot, and the specific values are not to be paid

attention to.

and we present them in figure 10a. The cusp region is above zero energy even for the

undissociated baryon in this case, as expected (see also [5]).

The structure of the energy curves for the dissociated cases is roughly

similar to that of the undissociated case, but in the plots here, we have zoomed in on

the fine structure. The one significant difference with the baryonic case is that instead of

a cusp, for non-zero boost, here we see a loop. We have done these numerical simulations

for various configurations and various resolutions (see also appendix C), so it seems very

unlikely that this loop is a result of some systematic numerical error. The loops arise as a

robust feature of all dragging configurations. In particular, they vanish for color non-singlet

configurations only when the windspeed is zero and there is no drag (see figure 7). The

technical reason why the loops arise in E vs. L plots is not hard to see. The schematic plots

of E vs. ρ and L vs. ρ for generic configurations and generic η are given in the figure to

the right. They both have one maximum, and for the case of non-drag configurations, the
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peaks in both E and L happen for the same value of ρ. But for dragging configurations,

the peaks in E are displaced to the left with respect to the peak in L, and therein lie the

origins of the loop. It would be nice to understand the physical origins of this shift, better.

We suspect that these loops can be used as a measure of the drag of the configuration,

because their areas seem to vary depending on the configurations.7 The fact that the loops

have non-zero area for dragging configurations, and the fact that the area of the loop in

the E
T
√

λ
vs. LT plot has dimensions of energy in string units, suggests that this could

perhaps be used as a measure of the energy loss. It would certainly be very interesting to

study this further, and we plan to come back to this in the future.

4. Discussions and loose ends

We have already reported the main conclusions in the introduction, so here we will merely

make some comments.

There are some natural extensions to the work done here. We have considered the

special case of Nc = 4 quarks, and found that we can reproduce and extend the results

in the literature that deal with color singlet configurations. Considering a uniform distri-

bution of quarks along the circle where the large Nc limit is more systematic would be a

natural next step. This will be more complicated because the strings are now not along the

coordinate axes. More generic gauge theories, configurations other than circular baryons,

more generic wind directions etc. are all possible lines of investigation, especially in under-

standing the possibility of extracting universal predictions valid across conformal/confining

gauge theories.

In this paper, we have compared dissociated configurations which capture some aspects

of the energetics of baryon dissociation. But it should be emphasized that the results of

this paper are tentative. It would be nice to investigate other configurations, especially

those with more quarks. Another interesting possibility is to do a scan of the various

dissociation configurations at various angles and lengths. In particular, investigating other

configurations which are identical except for their orientations would be useful.8

Our original configuration of four quarks was specifically chosen to simplify the calcu-

lations. This is a perfectly good starting point, but it also suffers from the drawback that

we cannot investigate many interesting configurations. A good example is the transverse

and longitudinal configurations (analogous to the two configurations we investigated in

section 3) after two quarks have dissociated. Both these configurations are not allowed

because the force balance conditions on the D5-brane are too restrictive.

To get a full and unambiguous understanding of the possible dissociation patterns,

we need a more exhaustive study of the various hints we have found in this paper. We

have tried to stay close to the configurations which are most easily tractable. Our aim

here has been to set up some of the framework and leave the more thorough work to a

more elaborate future project, perhaps with more man-power. Some of these questions are

currently under investigation.

7For the cases considered in this section, this effect is not pronounced.
8Not all such configurations are kinematically allowed.
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A. Equations of motion

The equations governing the various static baryon-like configurations is obtained by varying

the total action with respect to the string coordinates and with respect to the position of

the D5-brane. Since the boundaries of the strings (at the D5-brane) are also supposed to

be varying, one ends up getting a bit more than the usual Euler-Lagrange equations. The

basic ideas are presented in [5], but we have chosen to redo it here for the case when there

are dragging strings to clarify the origin of some negative signs which turn out to be crucial

in this work.

The action for the system takes the general form

S =
∑

m∈{up}

∫ ∞

re

Lm(x′
i,m, r)dr +

∑

n∈{down}

∫ re

r0

Ln(x′
i,n, r)dr + SD5(re), (A.1)

where we have denoted all the functional dependencies on the relevant variables. xi,m

stands for the the i-th coordinate of string m. Primes are, again, with respect to r. The

summation over the strings will be written explicitly in what follows, but the summation

over i, should be understood from the context.

First we vary with respect to the x’s and get the individual equations of motion for the

various strings. But since the boundaries are also allowed to vary, we also get boundary

equations of motion which give further constraints on the configurations. Setting δS = 0

(for variations of xi), we end up with

0 =
∑

m∈{up}

∫ ∞

re

dr
∂Lm

∂x′
i,m

δx′
i,m +

∑

n∈{down}

∫ re

r0

dr
∂Ln

∂x′
i,n

δx′
i,n (A.2)

=
∑

m∈{up}

∫ ∞

re

dr

[

d

dr

(

∂Lm

∂x′
i,m

δxi,m

)

− d

dr

(

∂Lm

∂x′
i,m

)

δxi,m

]

+
∑

n∈{down}

∫ re

r0

dr

[

m → n

]

.

We have written δx′
i,m as d(δxi,m)/dr and done an integration by parts as usual. Since the

variations δxi are arbitrary in the bulk (of the string), the second term in each piece has to

be zero and gives rise to the standard Euler-Lagrange equations. In the present case they

take the form:

∂Lm

∂x′
i,m

= const. ≡ Ki,m,
∂Ln

∂x′
i,n

= const. ≡ Ki,n. (A.3)
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What remains in the variation is

0 =
∑

m∈{up}

∫ ∞

re

dr
d

dr

(

∂Lm

∂x′
i,m

δxi,m

)

+
∑

n∈{down}

∫ re

r0

dr
d

dr

(

∂Ln

∂x′
i,n

δxi,n

)

= −
∑

m∈{up}

∂Lm

∂x′
i,m

δxi,m

∣

∣

∣

∣

r=re

+
∑

n∈{down}

∂Ln

∂x′
i,n

δxi,n

∣

∣

∣

∣

r=re

(A.4)

The strings are fixed at r = r0 and r = ∞, so the terms from those ends of the integral

don’t contribute. Also, at r = re, the strings are allowed to move, but only under the

constraint that they are all still attached at the baryon vertex. This means that δxi,m|re
=

δxi,n|re
≡ δxi|re

. Another input comes from the Euler-Lagrange equations above. They

say, in particular, that ∂L
∂x′

i

∣

∣

re
= Ki. Putting this all together, we end up with

∑

m∈{up}
Ki,m −

∑

n∈{down}
Ki,n = 0, (A.5)

which gives rise to three equations, one for each i.

Now we turn to variations in re. The idea here is that we vary the boundary re, an look

for variations in x which result from considering the extrema of the action with this new

boundary. In other words, in figure 12, both x and x̄ are solutions of the Euler-Lagrange

equations with their respective boundaries.

One way to handle this shift in boundary is to think of r as a map from u ∈ [0, 1] to

the integration range (i.e., write r as r(u)). Then we can think of u as the time variable,

with fixed boundaries 0 and 1, and r will be just another coordinate. The changes in

the boundary can be re-interpreted now as variations in r, at the fixed boundaries of the

u-interval. Thus we have translated a moving boundary to a boundary term: something

easily handled using standard variational approaches (See e.g., section 1 of [24] for a clean

discussion of variational methods with boundary terms.). This method9 works, but un-

fortunately our action involves different pieces which contain different ranges for r: the

upward strings go from re to ∞, while the downward strings are from r0 to re. This makes

this approach somewhat complicated, so we will follow another path which is much more

direct and intuitive.

Let us consider what happens to the classical solutions of a system with the action

S0 =

∫ re

0
L
(

x(r), x′(r)
)

dr, (A.6)

under variations of the boundary. We are interested in finding new equations of “motion”

by setting

0 = δre
S0 =

∫ re+δre

0
L
(

x̄, x̄′) dr −
∫ re

0
L
(

x, x′) dr (A.7)

The important thing to note here is that x̄ is supposed to be the classical solution corre-

sponding to variations with the boundary fixed at re +δre, just as x is the classical solution

9Incidentally, this approach seems like a pretty general way to do variational mechanics.
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x̄(r)

x(r)

re re + δrer

δx(r)

Figure 12: The classical solutions corresponding to different boundaries.

with boundary fixed at re. We have denoted x̄(r)−x(r) ≡ δx(r). Upto first order in small

quantities, we can write,

0 =

∫ re

0

(

L(x̄, x̄′) − L(x, x′)
)

dr + L(x, x′)|re
δre. (A.8)

By the usual tricks, the first piece can be massaged into the form
∫ re

0
dr

(

∂L

∂x
δx +

∂L

∂x′ δx′
)

=

∫ re

0
dr

[(

∂L

∂x
− d

dr

∂L

∂x′

)

δx +
d

dr

(

∂L

∂x′ δx

)]

.

The Euler-Legrange term vanishes because x is a classical path, and the other piece gets

integrated and receives contributions only from the boundary. Since we imagine that the

boundary at zero is held fixed, we end up with

0 =
∂L

∂x′ δx

∣

∣

∣

∣

re

+ L(x, x′)|re
δre. (A.9)

An important input at this stage comes from the fact that δx(r) is the variation at fixed r

between classical solutions with different boundaries. Notice that by definition δT x(re) =

δx|re
+ ∂x

∂r δr
∣

∣

re
is zero: at the new boundary re+δre, the new classical solution x̄ is supposed

to have vanishing variations as well. So we get the final result,

0 =

(

L − ∂L

∂x′x
′
)
∣

∣

∣

∣

re

. (A.10)
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This was done for the case when the moving boundary was at the upper end of integration.

For quarks hanging from the boundary of AdS, there will be an overall sign. Putting all

these ingredients together, we finally get

−
∑

m∈{up}

(

Lm − ∂Lm

∂x′
i,m

x′
i,m

)
∣

∣

∣

∣

r=re

+
∑

n∈{down}

(

Ln − ∂Ln

∂x′
i,n

x′
i,n

)
∣

∣

∣

∣

r=re

+
dSD5

dre
= 0 (A.11)

as the re-equation of motion for the various quarks and the D5-brane.

B. Trailing string

In order to get a handle on the various dissociated baryonic configurations, we need to

understand the trailing string solution that extends from the D5-brane to the black hole

horizon. We will show in this appendix that the most general string of this form in the

x1 − x3 − r space lies along the wind direction (x3 − r plane). This intuitively natural

conclusion is important because (due to the force balance conditions at the D5 brane) it

considerably restricts the resultant dissociation configurations that are allowed.

The action for the most general static string stretched between the D5 and

the horizon is,

S =
T

2πα′

∫ re

r0

dr

√

A
( 1

f
+

r2x′2
1

R2

)

+
r2f(r)x′2

3

R2
. (B.1)

The equations of motion for the two components are

x′
1 =

R2

r

K1
√

r2fA − R2K2
3A − R2K2

1f
, (B.2)

x′
3 =

R2

fr

K3A
√

r2fA − R2K2
3A − R2K2

1f
. (B.3)

By defining

t =
r

r0
, µ =

α

ρ2
, ν =

β

ρ2
and x1,3 =

R2

r0
z1,3, (B.4)

we can rewrite the above equations as

(

dz1

dt

)2

= µ2 1

(t4 − cosh2 η)(t4 − 1 − ν2) − µ2(t4 − 1)
, (B.5)

(

dz3

dt

)2

=
ν2 (t4 − cosh2 η)2

(t4 − 1)2
1

(t4 − cosh2 η)(t4 − 1 − ν2) − µ2(t4 − 1)
. (B.6)

We would like to have simultaneous solutions of these two equations. A real solution can

clearly only exist if

(t4 − cosh2 η)(t4 − 1 − ν2) − µ2(t4 − 1) > 0. (B.7)
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(We will be sloppy about distinguishing > and ≥ in what follows, we will consider the

boundaries explicitly.) The variable t ranges from t = 1 at r = r0 (horizon) to t = 1/ρ at

r = re (D5 brane). We are interested in the case where 1/ρ >
√

cosh η (See, for example,

the screening length plots.). So for the entire range 1 < t <
√

cosh η + ǫ, with ǫ small

enough10 and positive, the above inequality should hold for the solution to make sense.

Doing a variable redefinition, this means that

x2 + x(sinh2 η − µ2 − ν2) − µ2 sinh2 η > 0, (B.8)

should hold for − sinh2 η < x < δ with small, positive δ. The above inequality is satisfied

as long as x is either less or more than both the roots of the quadratic11 (the discriminant is

positive, so the roots are never complex). If one of these ranges overlaps with − sinh2 η <

x < δ, then we have a solution. This happens iff

− sinh2 η >
−(sinh2 η − µ2 − ν2) +

√

(sinh2 η − µ2 − ν2)2 + 4µ2 sinh2 η

2
, (B.9)

or

δ <
−(sinh2 η − µ2 − ν2) −

√

(sinh2 η − µ2 − ν2)2 + 4µ2 sinh2 η

2
. (B.10)

The former inequality implies

ν2 sinh2 η < 0. (B.11)

This is clearly impossible, but there remains the possibility of the limiting case ν = 0,

when the inequality is saturated. But this case is clearly pathological because it is easy to

see that the original inequality (B.7) is violated for values of t that lie close enough to 1.

The remaining possibility is the second inequality (B.10). This can be rewritten as

δ2 + δ(sinh2 η − µ2 − ν2) − µ2 sinh2 η > 0, (B.12)

and it needs to be satisfied if we tune δ small enough. This means that the only possibility

is the limiting case µ = 0, where the inequality is saturated. But this is precisely the case

when the trailing string is purely along x3, which gives rise to the solution considered in

appendix A of [4].

C. Other configurations

In this appendix we will look at some dissociated configurations to illustrate the fact that

the energy plots can significantly differ from the ones considered before, depending on the

10The integration limits are between 1 and 1

ρ
. We know that 1

ρ
is bigger than

√

cosh η, even though we

don’t know how much bigger. So at least for sufficiently small positive ǫ, we can claim that the inequality

should hold.
11As opposed to being lesser than the bigger root and bigger than the smaller root.
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Figure 13: LT vs. ρ for the various cases. The top curve is for the undissociated baryon. The

color code for the rest is as follows. Violet: case B, blue: case A, green: case I (from section 3),

brown: case II. All the plots in this appendix are for η = 6.
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Figure 14: E

T
√

λ
vs. L at η = 6. The color code is the same as before.
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Figure 15: E

T
√

λ
vs. L at η = 6. The lowest curve is undissociated baryon, the rest of the color

code is the same as before.

configuration of quarks. The configurations we consider here are the minimal configurations

allowed, if one stipulates that after a quark has dissociated, the remaining quarks in the

baryon still remain on the circle. Of course, since we do not understand the dynamics,

this is an ad hoc assumption. The purpose of this section is to give a flavor of the various

dissociations patterns allowed.
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The configurations we consider are easily described by the condition that the quarks

remain on the circle. The force balance conditions for our simple system are stringent

enough that if the dissociated quark is one of the transverse ones, then not all of the

remaining three quarks can remain in a circle. So we will look at the two cases where one

of the quarks in the longitudinal direction is the dissociated one.12 In the (x1, x3) plane,

the two cases we consider will be defined by the quark positions

Case A : (1, 0), (−1, 0), (0, 1), (C.1)

Case B : (1, 0), (−1, 0), (0,−1). (C.2)

For example, in this notation, the longitudinal case (case I) considered in the main text

will be defined by the quark locations (0, 1), (0, 0), (0,−1).

We will not present the details of the computations because the general formalism is

the same as in the examples we considered in the main body of the paper. The one slight

subtlety is that to make sure that the boundary quarks are arranged a circle, the relations

we need to impose are,

L(2)
x3

− L(1 or 3)
x3

= L(1 or 3)
x1

(C.3)

for case A, and

L(1 or 3)
x3

− L(2)
x3

= L(1 or 3)
x1

, (C.4)

for case B. The Lxi
are measured from the D5-brane, and the superscripts denote the

relevant quark (notice the 1 ↔ 3 symmetry). We present here the plots of the energies,

screening lengths, together with those of the cases considered in section 3. The comparisons

with the undissociated baryons are also presented.
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